Answer:
Option D
Explanation:
$CO_{2}(g)+H_{2}(g) \rightarrow CO(g)+H_{2}O(g)$
$\triangle H_{f}^{0}= (\triangle H)_{products}-(\triangle H)_{reactants}$
Hence,
$\triangle H_{f}^{0}=[\triangle H_{fCO}+\triangle H_{fH_{2}O}]-[\triangle H_{fCO_{2}}].....(i)$
Given, $\triangle H_{fCO_{2}(s)}=-393.5kJmol^{-1}$
$\triangle H^{0}_{fC0}=-110.5kJmol^{-1}$
$\triangle H^{0}_{fH_{2}O}=-241.8kJmol^{-1}$
Put there value in equation(i)
$\triangle H_{f}^{0}$=-110.5-241.8+393.5=41.2